APPROXIMATE AVERAGING OF THE
HEAT-CONDUCTION EQUATION

Yu, A, Rogozhin UDC 536.21
Simple formulas are obtained for calculating the mean nonstationary temperature of an
arbitrary fuel element, The proposed "mean adjoint" approximation is found to have de-

finite advantages over the quasistationary approximation,

Thermophysical calculations frequently require the solution of the heat-conduction equation*
ot

cy— =Mt ¢ 1
ot
for a uniform fuel element with a convection boundary condition
— Agrad t(S, ©) = at(S, 1) 2
and some initial conditions
ty=1(x, 7). (3)

An analytic solution of the boundary-value problem (1)-(3) is known only for very simple cases [1].
In many engineering calculations it is sufficient to find the change in the mean temperature of the fuel

element
Foidv 0

as a function of the time; t = t(r), This, together with the energy balance, permits a calculation of the wall
temperature t(S, T), and the set of equations describing the nonstationary process becomes complete,

The functions in Eqgs, (1)-(3), defined on the interval 7, = T < =, can always be continued into the inter-
val —o < T < = in such a way as to satisfy the condition
F(— o0) = 0. (8)
This permits a solution which is linearly dependent on q, In addition we assume that the whole time inter-

val can be divided into a number of intervals in each of which the thermophysical parameters are approxi~
mately constant, Then the solution of the problem in one interval is the initial condition for the next,

Quasistationary Approximation, Suppose that after a sufficiently long time a steady heat release rate
ig established in the fuel element, i.e,

0 )=
L ) =0, 6)

Then the solution of the boundary-value problem (1)~-(3) will asymptotically approach the solution of
the stationary equation

0 = AAPT 1 g(x, o0); — Agrad, ¥ (S) = ar(S), @

*In Egs, (1)-(8) all temperatures are measured from the temperature of the coolant,
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which, after some simple transformations, can be integrated to give

g = Y9 o dV o [E(S)dS
fav [ dv

8)

In the quasistationary or parabolic approximation [2] it is assumed that the nonstationary temperature
is proportional to the stationary: t(x, 7) & gst (x)a(r), The stationary equation (7) is approximated by the
equation

0=2At +q'; —hgrad ' (S) = at' (S). 9)
In order that a solution of the form t'{) = ¢(x)q' can always be obtained we must have
M@ = —1; — Agrad, ¢(S) = ap(S). (10)
Thus in the quasistationary approximation it is assumed that
tHx, D= F(x) a(@Dx=qg'epx)a(m). (11)
Substituting (11} into both sides of Eq, (8) and using (4) leads to
L1 S _ 7

AR 12)

Using this in averaging the heat-conduction equation (1) gives an equation for the approximate average tem-
perature of the fuel element

PR
CVF_L_——?—I‘Q (13)

with the condition (5), I is easy to find a solution of these equations

(1) = 1 yexp [o(® —Dq@)dr, (14)
cy
where
_ o fedV -~ fqdV
0= cyﬁ)’(PﬂjdV’q jdV’ (15)

and q(7) is continued into the interval T < T, in such a way as to satisfy the initial condition

7= L g exp[o (v’ — 1)l ¢ (v') dv’. (16)
oy

Adjoint Temperature Averaging., In order to obtain a more accurate formula for the mean tempera-
ture of a fuel element we use the results of [3]. For our purposes it is sufficient to understand by the ad-
joint of t the function t* satisfying

[ der — Aty av = o, ' (17)

where the integration is extended over the whole volume of the fuel element,
We write the stationary equation adjoint to the initial boundary-value problem (1)-(8) in the form
0 = AA#* g%, — hgrad, f*(S, 1) = at*(S, 1), (18)

where it is assumed that the fictitious source g* = q*(T) depends only on the time, The boundary conditions
(2) and (18) ensure that t and t* are adjoints, as is easy to see by applying Green's theorem to Eq. (17) [3].

We now multiply Eq, (1) by t* and (18) by t, subtract one from the other, and integrate over the volume
of the fuel element, Using (17) we obtain

o jt*g—tdv _ S‘qt*dV——q* S'th‘ (19)
T

Since the average temperature of the fuel element is required, it is natural to demand that the fictitious
source q* = q*(7) ensure that
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f tdV = g tdv, (20)
which implies that the mean temperature of the fuel element equals the mean adjoint temperature
t(r) = 1* (7). (21)
In this case Eq. (19) is reduced to the form
o Ot g — g%, (22)

where the tilde denotes adjoint temperature averaging:

G JardV (23)
fe=dV
Equation (18) can be solved in the same way as (9)
t* (X, T) =@ (X) q* (T)’ (24)

where the spatial distribution ¢(x) is given by (10). ¥ q*(7) were known, the determination of the mean ad-
joint temperature would solve the problem according to (21), Unfortunately it is necessary to make an
approximation in order to find g* from Eq, (22).

We write the solution of the boundary-value problem (1)-(3) in the form t = t* + g, It then follows
from (21) that the mean deviation of the nonstationary temperature from the adjoint must be zero: §~: 0.
Therefore it seems very plausible to assume that the adjoint temperature average of the deviation 8 is also
changed insignificantly, i.e,

. 5z*%3_ dv
A T ~ 25
o Ty =0 (%)

The calculations performed above can be made by using the apparatus of adjoint functions if we set
q*(T) =q'a(r). Then the quasistationary approximation (11), even neglecting the error in approximating Eq,
(7) by (9), can be assumed in our notation

tHx, V=t (x, T); O(r, T)=0. (26)

Thus the mean adjoint approximation (25) guarantees an accuracy which is at least no worse than the quasi-
stationary approximation,

By using (24) Eq. (22) in the mean adjoint approximation is reduced to the form

og*

= n(g— g%), 27
P nig—gq*) (27)
where
! - fordv - | pqav
u= ;@ == ;g = . (28
cYe { dV {@dV )

Keeping in mind condition (5), integrating (27) and substituting the result into (24) we obtain by using 21)
10 =1 | epla (v — DI de, (29)
where E(T) is continued into T < T, in such a way as to satisfy the initial condition
fy= 10 | expln (¥ — )7 () v 30
Comparing (14) and (29) we note that these formulas for the mean temperature of the fuel element differ

in the nature of the averaging and almost coincide when the stationary temperature distribution is nearly uni-
form (¢(x) = const),

One-Dimensional Problems, I the fuel element has a simple geometry the stationary equation (10 is
eagy to solve, and this permits an easy calculation of all the quantities appearing in Eqgs, (16) and (29) for the
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mean temperature of the fuel element, In particular for one-dimensional problems (solid plate, cylinder,
and sphere) the solution of Eq, (10) can be expressed by the single formula;

l1>(X)=—;c —ﬁj B (x), (31)
where
1 x\2 2
== L 32
P (x) 2[1 (L>+Bi]’ (32)

and the characteristic number k and the characteristic dimension L are given by the specific geometry:

Fuel Element k L
Plate 1 Half-thickness
Cylinder 2 Radius
Sphere 3 Radius

The substitution of (31) gives the following expressions for the mean temperature of the fuel element:

Fo _
aq.s(Fo) = % S‘ exp [%—(FO’ — Fo)J?;(Fo’)dFo’; (33)
Iz _~ Fo L
b alFO) = T:{— j‘ exp [? (Fo' — FO)} g (Fo') dFo’ (34)

e

for the quasistationary and mean adjoint approximations respectively, The averages P and '2,7)' entering (33)
and (34) are calculated by integrating over the volume of the fuel element in the appropriate coordinate sys-
tem, The results can again be written in a single form:

~ 1 1
=— ; (35)
Y= 12
~ 1 1 2 1 2 ’
v P [Biz E-+2 Bi +(k+2)(k+4)}' (36)
Numerical Example, In the simplest case when
{0, T, _
N {const; >0, fo=0, 37
Egs. (33)-(36) for a cylindrical fuel element take the form
- gR? 2 ) :
lgs= I—exp{——="TFol}]|; 38
as= [ p(—Fo) (39)
e ¥ 1o (=)
fng=——l1-—exp| ——Fol||;
ma= "o ¥ p 3 (39)
1 1 1
— + —+—
B 4 1,1
Bi 4
At the same time the exact solution of the case under consideration is known [1], In our notation it has the
form
— 2 _
T = qR p— 2% an exp (— pi Fo)l, (41)
2A r

n=l

with the coefficients given by
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4Bi
3 B, =—5—5——— (42)
AN pin (4a -+ BI%)
AN
10 \XK where the roots iy, are found from the transcendental equations
b7l
5 e KA Bi. (43)
Jl (p‘n)
g s
a2 a4 a6 a8 Fo The approximate formulas have advantages in making cal-
I . . . .
-5 —",(50/,0 culations even when an exact golution exists, The only question
f»&a concerns the accuracy,

~10

Fig,1. Calculational errors, The
numbers on the curves are values of
the Biot number, &= [(t/T)-1]in %
and Fo = @/RYr,

Figure 1 shows the errors in calculating the mean tempera~
ture of a cylindrical fuel element in the quasistationary (solid
curves) and mean adjoint (open curves) approximations as func-
tiong of the Fourier and Biot numbers, The exact solution was
taken as Eq, (41), breaking off the infinite series after the first
six terms [1].

Figure 1 shows that the quasistationary approximation overestimates the mean fuel element tempera-
ture, while the mean adjoint approximation underestimates it, As regards the accuracy of the calculation,
our method leads to an appreciably smaller error and converges appreciably more rapidly to the exact solu-
tion, For Bi = 10 the mean adjoint approximation is accurate to within 3% from the instant when the tem-
perature xt'eaches alevel 0.1 tSt, while the quasistationary approximation reaches this accuracy only after
t > 0.9 t5°,

In addition it should be noted that for nonuniform heat release (g ) # const) the error in the quasi~
stationary approximation is increased further because of the error in approximating the stationary Eq, (7)
by Eq, (9) with an average heat release,

NOTATION

is the specific heat of the fuel element;

is the density;

is the thermal conductivity;

is the heat transfer coefficient;

is the temperature;

is the time;

is the Laplacian operator;

is the volumetric thermal source strength;

is the boundary of the fuel element;

is the stationary temperature;

denotes a parameter of the adjoint equation;

&) is the spatial distribution of the stationary temperature;
is the mean integral of fx);
is the mean adjoint of f{x),

Pyl x HWA DY TR >0
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