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Simple fo rmu la s  a re  obtained for  calculat ing the mean nonsta t ionary  t empe ra tu r e  of an 
a r b i t r a r y  fuel e lement .  The p roposed  nmean adjoint" approximat ion  is found to have de-  
finite advantages  over  the quas i s ta t ionary  approximat ion .  

The rmophys ica l  calculat ions f requent ly  requ i re  the solution of the heat-conduct ion equation* 

at 

for  a un i fo rm fuel e lement  with a convection boundary  condition 

- -  )~ grader (S, z) = at (S, T) (2) 

and some initial conditions 
to = t (x ,  % (3) 

An analyt ic  solution of the boundary-va lue  p rob l em (1)-(3) is known only for  v e r y  s imple  cases  [1]. 

In many  engineer ing calculat ions it is sufficient to find the change in the mean t e m p e r a t u r e  of the fuel 
e lement  

[-= S tdv (4) 
dV 

as a function of the t ime; t = tO- ). This ,  together  with the energy balance,  p e r m i t s  a calculat ion of the wall  
t e m p e r a t u r e  t(S, ~-), and the se t  of equations descr ib ing  the nonsta t ionary  p r o c e s s  becomes  comple te .  

The functions in Eqs.  (1)-(3), defined on the in terval  T 0 -< ~" < ~, can always be continued into the in t e r -  
val  - ~  < ~" < ~ in such a way as to sa t i s fy  the condition 

"t (--  ~ )  = 0. (5) 

This  p e r m i t s  a solution which is l inea r ly  dependent on qo In addition we a s sume  that the whole t ime in t e r -  
val  can be divided into a number  of in tervals  in each of which the the rmophys ica l  p a r a m e t e r s  a r e  approx i -  
ma te ly  constant .  Then the solution of the p rob l em in one interval  is the initial condition for  the next.  

Quas i s ta t ionary  Approximat ion.  
is es tabl i shed in the fuel e lement ,  i .e.  

Suppose that after a sufficiently long time a steady heat release rate 

aq (x, ~ )  = 0. (6) 
dz 

Then the solution of the boundary-va lue  p r o b l e m  (1)-(3) will a sympto t ica l ly  approach the solution of 
the s t a t ionary  equation 

0 = )~.6t St + q (x, c~); - -  ~ grad~U (S) = aU (S), (7) 

*In Eqs.  (1)-(3) all t e m p e r a t u r e s  a re  measu red  f r o m  the t e m p e r a t u r e  of the coolant.  
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which,  a f t e r  s o m e  s i m p l e  t r a n s f o r m a t i o n s ,  can-be  in t eg ra t ed  to give 

q = ~q(t t)oo)dV ~ # ( S ) d S  
' = ~ ( 8 )  y dr 

In the q u a s i s t a t i o n a r y  or  p a r a b o l i c  a p p r o x i m a t i o n  [2] it is a s s u m e d  that  the n o n s t a t i o n a r y  t e m p e r a t u r e  
is  p r o p o r t i o n a l  to the s t a t i o n a r y :  t(x, r)  ~ tSt(x)a( 'r).  The s t a t i o n a r y  equat ion  (7) is a p p r o x i m a t e d  by  the 
equa t ion  

0 = )~ht' + q'; - -  )~ grad,f  (S) = (zt' (S). (9) 

In o r d e r  that  a so lu t ion  of the f o r m  t '  (x) = ~(x)q'  can  a lways  be  obta ined  we mus t  have  

)~hq~ = - -  1; ~ )~ grad,~ ~ (S) = cap (S). (10) 

Thus  in the q u a s i s t a t i o n a r y  a p p r o x i m a t i o n  it is  a s s u m e d  that  

t(x, ~)..~pt(x) a ( , ) .~q '~(x )a(~)  (11) 

Subst i tut ing (Ii) into both  s ides  of Eq.  (8) and us ing  (4) l eads  to 

St(s, ~)dS i 
- -  (12) 

~ dV ep 

Using  this in a v e r a g i n g  the h e a t - c o n d u c t i o n  equat ion  ('1) g ives  an equat ion  f o r  the a p p r o x i m a t e  a v e r a g e  t e m -  
p e r a t u r e  of the fuel  e l e m e n t  

OF =F + ~ (13) c?~-= 

with  the condi t ion (5). 

w h e r e  

It is e a s y  to find a so lu t ion  of t hese  equat ions  

T 

1 y exD [~ (~' - -  ~)1 q(~') dr ' ,  t (~ )  = c~, (14) 

I S ~dV; S qdV 
~ cv ;  dv' (15) 

and ~(T) is  cont inued into the i n t e rva l  ~- < r 0 in such  a way  a s  to s a t i s f y  the ini t ia l  condi t ion  

To 

1 ; expia(~" - -%)]  q-(~')dT'. L--c  (16) 

Adjoint  T e m p e r a t u r e  A v e r a g i n g .  In o r d e r  to obta in  a m o r e  a c c u r a t e  f o r m u l a  fo r  the m e a n  t e m p e r a -  
t u r e  of a fue l  e l e m e n t  we u s e  the r e s u l t s  of [3]. F o r  our  p u r p o s e s  it is  suf f ic ien t  to u n d e r s t a n d  by  the ad -  
joint of t the funct ion t* s a t i s f y i n g  

y (tAt* - -  t ' a t )  dV = O, (17) 

w h e r e  the in t eg ra t ion  is  ex tended  o v e r  the whole  v o l u m e  of the fuel  e l e m e n t .  

We w r i t e  the s t a t i o n a r y  equa t ion  adjoint  to the ini t ia l  b o u n d a r y - v a l u e  p r o b l e m  (1)-(3) in the f o r m  

0 = ~.At* + q*; - -  g grader* (S, ~) = at* (S, z), (18) 

w h e r e  it is  a s s u m e d  that  the f ic t i t ious  s o u r c e  q* = q*ff)  depends  only on the t i m e .  The  b o u n d a r y  condi t ions  
(2) and (18) e n s u r e  that  t and t*  a r e  ad jo in ts ,  as  is e a s y  to s ee  by  app ly ing  GreenTs t h e o r e m  to Eq.  (17) [3]. 

We now mul t ip ly  Eq.  (1) by  t* and (18) by  t, s u b t r a c t  one f r o m  the o the r ,  and i n t e g r a t e  o v e r  the v o l u m e  
of the fuel  e l e m e n t .  Us ing  (17) we ob ta in  

Since the a v e r a g e  t e m p e r a t u r e  of the fuel  e l e m e n t  is  r e q u i r e d ,  it is  na tu r a l  to demand  that  the f ic t i t ious  
s o u r c e  q* = q*ff )  e n s u r e  that  
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~ t*dV = S tdV' 

which impl ies  that the mean t e m p e r a t u r e  of the fuel e lement  equals the mean adjoint t e m p e r a t u r e  

7(~) --~* (% 

In this case  Eq. (19) is reduced to the f o r m  

Ot = ~__q,,  
cv -0Y 

(20) 

(21) 

(22) 

where  the tilde denotes adjoint t e m p e r a t u r e  averaging:  

4 = S qt*dv 
t*dV 

Equation (18) can be solved in the s ame  way as (9) 

t* (x, ~) :- q~ (x) q* (r), 

(23) 

(24) 

where  the spat ia l  d is t r ibut ion cp(x) is given by (10). If q*0-) were  known, the determinat ion of the mean ad-  
joint t e m p e r a t u r e  would solve the p r o b l e m  according  to (21). Unfortunately it is n e c e s s a r y  to make an 
approximat ion  in o rde r  to find q* f r o m  Eq. (22). 

We wr i te  the solution of the boundary-va lue  p r o b l e m  (1)-(3) in the f o r m  t = t* + 0. It then follows 
f r o m  (21) that the mean deviat ion of the nonsta t ionary  t e m p e r a t u r e  f r o m  the adjoi~t must  be zero :  O= 0. 
T h e r e f o r e  it s e e m s  v e r y  plausible  to a s s ume  that the adjoint t e m p e r a t u r e  ave rage  of the deviation 0 is a lso  
changed insignif icantly,  i .e .  

Oo dV 
a 0  = it* a~ ~ o. (25) 
8T ! t*dV 

The calculat ions p e r f o r m e d  above can be made by using the appara tus  of adjoint functions if we set  
q*ff) = qva0- ). Then the quas i s t a t iona ry  approximat ion  (11), even neglecting the e r r o r  in approximat ing  Eq. 
(7) by (9), can be a s sumed  in our notation 

t (x, ~) ~ t* (x, r); 0 (x, ~) ~-~ O. (26) 

Thus the mean  adjoint approximat ion  (25) guarantees  an accu racy  which is at l eas t  no worse  than the quas i -  
s t a t iona ry  approximat ion .  

By using (24) Eq. (22) in the mean adjoint approximat ion  is reduced to the f o r m  

where  

8q* 
- -  ~ (q - -  q* ) ,  (27 )  

0r 

1 ,I ~ 2dV ,I opqdV 
= _ _ ;  r # = _ _ ;  ~ _  (28) 

cvq) S r S ~dV 

Keeping in mind condition (5), in tegrat ing (27) and subst i tut ing the resu l t  into (24) we obtain by using (21) 

= ~t~ i exp [~ (~' - -  ~)] 4 (r') dr',  (29) 7(~) 

where  ~('r) is continued into T < ~'0 in such a way as to sa t i s fy  the initial condition 
To 

70 = ~tr i exp [t~ (~' - -  %)]q (~')dr'. (30) 

Compar ing  (14) and (29) we note that these  fo rmu la s  for  the mean  t e m p e r a t u r e  of the fuel e lement  differ  
in the nature  of the averag ing  and a lmost  coincide when the s ta t ionary  t e m p e r a t u r e  dis tr ibut ion is near ly  uni-  
f o r m  (c#(x) ~ const) .  

One-Dimensional  P r o b l e m s .  If the fuel e lement  has a s imple  geome t ry  the s ta t ionary  equation (10) is 
easy  to solve,  and this p e r m i t s  an easy  calculat ion of all the quanti t ies appear ing  in Eqs.  (16) and (29) for  the 

1001 



mean temperature  of the fuel element.  
and sphere) the solution of Eq. (10) can be expressed by the single formula:  

1 L ~ 
(x) , (x), 

where 

In par t icular  for one-dimensional problemg (solid plate,  cyl inder,  

, ( x ) = - ~ -  1-- ~ -  + , 

(31) 

(32) 

and the character is t ic  number k and the character is t ic  dimension L are given by the specific geometry:  

Fuel Element k L 

Plate 
Cylinder 
Sphere 

1 
2 
3 

Half-thickness 
Radius 
Radius 

The substitution of (31) gives the following expressions for the mean temperature  of the fuel element:  

Fo 

L ~ k , 
-tq. s ( F o ) = - ~ - - ~  exp [ - ~ - ( F o -  Vo)] q (Fo') dFo'; (33) 

Fo 

7~ ~(Vo) = L~ r~ k , �9 ~, ~ S e x p [ T ( F o - - F o ) ] q ( P o ' ) d P o '  (34) 

for the quasistat ionary and mean adjoint approximations respectively.  The averages "r and ~ entering (33) 
and (34) are calculated by integrating over the volume of the fuel element in the appropriate coordinate sys -  
tern. The resul ts  can again be writ ten in a single form:  

1 _ _ 1 .  (35) 
~ = - ~ +  k + 2  ' 

I [ 1 2 1  2 ]  (36) 
: ~ ~ + k + 2  Bi + ( k + 2 ) ( k + 4 )  " 

Numerical  Example. In the s implest  case when 

t0; ~ 0 ,  
q ~- [ const; "~ > 0, to = 0, 

Eqs.  (33)-(36) for a cylindrical  fuel element take the form 

"tm a - qR~ 1 --  exp -- _-=- Fo ; 
�9 2~ 

1 + 1 1 
1 1 . Bi - - - ~ -  ~ B T  -[- 1~- 

+ - -  
Bi 4 

At the same time the exact solution of the case under consideration is known [1]. 
form 

(37) 

(38) 

(39) 

(40) 

In our notation it has the 

(41) 

with the coefficients given by 
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Fig.  l~ Calculational e r r o r s .  The 
numbers  on the curves  a re  values  of 
the Blot number .  ~ = [ (F /T) -1]  in % 
and Fo = (a/R2)ro 

4Bi 
B n  - -  2 2 tn (~tn -~ Bie) (42) 

where  the roots  Pn are  found f rom the t ranscendental  equations 

G (~) ~ ~- - Bi. (43) 
J1 (~) 

The approximate formulas  have advantages in making ca l -  
culations even when an exact solution exis ts .  The only question 
concerns  the accuracy .  

F igure  1 shows the e r r o r s  in calculating the mean t empera -  
ture of a cyl indr ical  fuel e lement  in the quasis ta t ionary (solid 
curves)  and mean adjoint (open curves)  approximations as func- 
tions of the Four i e r  and Blot numbers .  The exact solution was 
taken as Eq. (41), breaking off the infinite s e r i e s  af ter  the f i r s t  
six t e rms  [1]. 

Figure  1 shows that the quas is ta t ionary  approximation overes t imates  the mean fuel e lement  t e m p e r a -  
tu re ,  while the mean adjoint approximation underes t imates  it. As r ega rds  the accu racy  of the calculation, 
our method leads to an appreciably  sma l l e r  e r r o r  and converges  appreciably more  rapidly to the exact solu-  
tion. F o r  Bi = 10 the mean adjoint approximation is accura te  to within 3% f rom the instant when the t em-  
pe r a tu r e  reaches  a level  0.1 t st ,  while the quasis ta t ionary approximation reaches  this accuracy  only af ter  
t > 0.9 t s t .  

In addition it should be noted that for  nonuniform heat r e l ease  (q(x) ~ const) the e r r o r  in the quasi -  
s ta t ionary  approximation is increased  fu r the r  because  of the e r r o r  in approximating the s ta t ionary Eq. (7) 
by Eq. (9) with an average  heat r e l ea se .  

e 

od 
t 
T 
A 
q 
S 
t s t  
* 

2(x) 
t 
f 

N O T A T I O N  

is the specific heat of the fuel element;  
is the density; 
is the thermal  conductivity; 
is the heat t r an s f e r  coefficient;  
is the t empera ture ;  
is the t ime; 
is the Laplacian opera tor ;  
is the volumetr ic  thermal  source  strength;  
is the boundary of the fuel element;  
is the s ta t ionary  t empera tu re ;  
denotes a p a r a m e t e r  of the adjoint equation; 
is the spatial  distr ibution of the s ta t ionary tempera ture ;  
is the mean integral  of f{x); 
is the mean adjoint of f (x). 
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